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ABSTRACT 

 Ramana Rao and Narayana (1981) studied the flow of two incompressible immiscible liquids occupying equal 

heights between two parallel plates in a rotating system under the action of constant pressure gradient. They also studied 

the associated thermal distribution, assuming equal and different plate temperatures. This branch of fluid mechanics has 

developed rapidly in recent times as an obvious consequence of interest in geophysical flow problems, earth’s atmosphere, 

oceans and core and of stars and galaxies. We considered the flow of two incompressible immiscible fluids occupying 

equal heights in rotating circular pipe. Immiscible fluids we mean, superposed fluids of different densities and viscosities. 

The rotating pipe that we consider here has the following physical meaning. If we introduce a pipe in a rotating flow, for 

example, rotating flow due to earth’s rotation, the pipe also rotates.  

KEYWORDS: Pressure gradient, Flux 

INTRODUCTION  

 This sets up the primary and secondary flows. Ramana Rao and Narayana (1981) suggested that olive oil and 

water can be taken as two immiscible liquids to test their theoretical conclusions for setting up an experiment.The 

uniqueness for two immiscible fluids in one-dimensional porous medium was studied by Baiocchi, Evans, Lawrence C, 

frank, Leonid, Friedman, Anver (1980). Patrudu (2001) studied the laminar flow of two incompressible immiscible liquids 

under a constant pressure gradient through a channel of circular cross section in a rotating straight pipe, rotating with a 

uniform angular velocity about an axis perpendicular to the channel. This problem was later extended by Sivarama Prasad 

(2006) for the hydro magnetic case. 

 The flow of two incompressible, immiscible liquids through a straight pipe in the annular region bounded by two 

concentric circles of radii a and a,  < 1, under two constant pressure gradients, occupying equal heights  is considered. 

BASIC EQUATIONS AND THEIR NON DIMENSIONAL FORM 

 We consider the steady laminar flow of two incompressible liquids under the action of constant pressure gradient 

through a channel of arbitrary cross section rotating with a uniform angular velocity about an axis perpendicular to the 

channel. The equations of motion in steady state flow, relative to a set of rectangular Cartesian coordinates 11 rr   (x1, y1, 

z1) rotating with a constant angular  velocity ’ with respect to an inertial system are  
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For fully developed laminar flow, the form of ’ is restricted to  

' = -cz' + F (r',)             (1.7) 

where ‘c’ is a constant and may be termed as the gradient of ’ along the axis of the pipe.  

 The above equations are the equations of motion of a viscous incompressible liquid characterized by viscosity v1 

and density 1ρ  occupying the space between r = a  and r' = a in the circular pipe for the upper liquid. Here (u’1, v’1, 

w’1) are the components of the velocity in the direction of (r’,, z’) where ‘’ is the angle between the radius and the axis 

of rotation and z1 is measured from the axis of the pipe.  

The corresponding equations for the lower liquid occupying the space between r’ = 0 to r’ = a  of the circular pipe, are  
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where ’ = P’ - )'sin'('
2
1 2222

2 zr  θρ         (1.12) 

For the upper liquid, we introduce the stream function '
1 such that  

r' u’1 = 



 1'          

v’1 = = 
'
'1
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           (1.13) 

where ’1 is a function of r’ and  only. Eliminating ’ from (1.1)  

and (1.2) we get 
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Using eq. (1.13) in eq. (1.3), we get  
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And   (X, Y) stands for the Jacobian of X and Y with respect to r’ and  

 respectively.  
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For the lower liquid following similar analysis, we get  
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In terms of the non dimensional variables,  
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where ‘c’ is the pressure gradient, R1, R2 stand for the Reynolds numbers of the upper and lower liquids respectively, T1 

and T2 are the Taylor numbers for these liquids respectively, we get  for 

Upper Liquid 
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and when k = 1 the pressure gradient is same for both the liquids. For different values of k, the pressure gradient is varied.  

Boundary Conditions 

 To find the solutions for W1, 1, W2, 2 we use the following boundary conditions given in non dimensional form,  
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at r = 1, W1 = 0 and 
r

 1 = 1 = 0          (1.26) 

at r =  , W2 = 0 and 
r

 2 = 2 = 0         (1.27) 

at r = b, (line between   and 1  i.e.   < b < 1)  
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Method of Solution 

For the upper liquid, we assume  

1 = T111 + 2
1T 12 + ……         (1.29) 

W1 = W10 + T1W11 + 2
1T W12 +…..         (1.30) 

For the lower liquid, we assume  

2 = T221 + 2
2T 22 + ……         (1.31) 

W2 = W20 + T2W21 + 2
2T W22 +…..         (1.32) 

Solutions 

 Substituting  equations (1.29) and (1.30) in equation (1.21) & equations (1.31) and (1.32) in equation (1.23) and to 

the zeroth power in both T1 and T2, we get  

2W10 = - 4           (1.33) 

2W20 = - 4 K            (1.34) 

which are to be solved with the appropriate boundary conditions to this approximation, namely  

W10 = 0 at r = 1 

W10 = W20 at r = ε 

brat
r

W
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r
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 2010  

and W20 = 0 at r =                                           (1.35) 

On solving eqs. (1.33 ) and ( 1.34 ), we get 

W10 = C1 + C2 logr – r2          (1.36)  

W20 = C3 + C4 logr – kr2          (1.37) 
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To the first order approximation in T1 and T2 ,  using the expressions (1.22 ), 

 ( 1.24 ), ( 1.36 ) and ( 1.37 )  for w10 and w20  we get 

for the upper liquid  

4 11 = -D * W10           (1.38) 

and for the lower liquid  

4 21 = -D * W20           (1.39) 

where D * = cos 










rr
sin

 

D * W10 = C2 θ
θ cos2r

r
Cos

          (1.40) 

D * W20 = C4 θ
θ cos2kr

r
Cos

          (1.41) 

These are to be solved subject to the conditions   

at  r = 1, W11 = 0 , 11 = 0  and  
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and writing  

11 = g11(r) cos 

21 = g21(r) cos           (1.43) 

in eqs. (1.38), (1.39)  we get  
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To the first order of approximation in T1 and T2 from equations (1.21) and 

 (1.23), we get 
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Using the expressions for 11, 21, w10, w20 from equations  

(1.43), (1.40) and (1.41) in eqs. (1.46), (1.47) we get  
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The boundary conditions on w11 and w21 are  

at  r = 1, w11 = 0   

at  r = b, w11 = w21,   r
w

 11  = L

r
w

 21  

at  r =, w21 = 0,                                                    (1.50) 
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Solving equations (1.48) and (1.49), we get 

w11 = h11(r) sin 

w21= h21(r) sin 

where                                           (1.51) 
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DISCUSSIONS OF THE STREAMLINES IN THE CENTRAL PLANE 

 In the central plane perpendicular to the axis of rotation θ =
2


or 
2

3
, it can be seen that from the equations 

(1.43), v' = 0 in either case. So a particle of liquid once in this plane does not leave it in the subsequent motion. The motion 

in the two halves of the pipe is therefore quite distinct from each other. 

The differential equation of the streamlines in the central plane of the pipe is  

2
π3or

2
π(θ

dw
dz

du
dy

1

1

1

1

 )         

 (1.54) 







1

1
1

1

11
1 1

r
uwhere

u
drwdz          (1.55) 






cos)(
1 21211

1

21 rgwhere

r

w
dz 





         (1.56) 



Secondary Flow of two Immiscible Liquids in a Rotating Annular Pipe of Circular Cross Section            47 

 

 

)cosr12c2krrAlogrrAr(A
)drwT(w192r

)cosr12c2krrAlogrrAr(A
192r

1
)drwTr(w

sing
)drwTr(w

sin θg
drrw

sin-g
drrw

dzT

4
4

64
8

2
6

2
5

21220
2

4
4

64
8

2
6

2
5

21220

21

21220

21

2

21

2
2



























    (1.57) 

To a sufficient approximation these streamlines for the lower liquid are given by  
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and zo
' is a constant of integration which is different for different stream lines and equal to the distance of the point r=0 on 

the curve from the axis of rotation.           

Values of )(T 1
0

1
1 zz  for= 0.5 b = 0.75 

r )(T 1
0

1
1 zz   

0.75 0.19313 

0.8 1.11275 

0.85 2.64434 

0.90 5.00022 

0.95 8.43429 

1.0 0 

 

Values of )(T 1
0

1
2 zz  for = 0.5 b = 0.75 
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r )(T 1
0

1
2 zz   

0.1 0.01633 

0.2 0.10848 

0.3 0.26647 

0.4 0.52794 

0.5 0.87765 

To a sufficient approximation these streamlines for the upper liquid are given by  
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 Table shows the same stream line in the plane  of symmetry for ε =0 and ε =1. We note that no stream line in the 

central plane ever reach the edge of the pipe. As the angular velocity Ω' is increased, the distance which must be covered by 

the central stream line to be within a given distance from the edge gets smaller., this results holds good for all values of ε  

between 0.5 and 1. 

 For a fixed value of T2, the effect of decreasing ε from unity to 0.5, is to increase the distance that the liquid 

particle in the central plane travel in going from points near edge of the pipe i.e., r=0 to points r= ε. The similar conclusions 

can be drawn for the upper liquid also. 

STREAM LINES OF THE SECONDARY FLOW 

 To the first order of approximation in T1 and T2, the equation for the projection of the stream lines on the cross 

section of the channel for the upper liquid is given by 192000 g 11 cosθ = k. 

Figure gives the projection of the stream lines on the cross section of the channel when = 0.5 for some values of k. 
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CONCLUSIONS   

 The stream line pattern in the central plane of the pipe has been discussed and the pattern of general stream lines 

for both upper and lower liquids have been obtained and shown graphically also. For different values of k, we get a set of 

closed curves which are symmetrical about the axis of rotation θ= 0. For an equal and opposite value of k, the curves in the 

lower half are obtained by the reflection of the curves on the diameter of the cross section perpendicular to the axis of 

rotation. The upper half of the cross section is divided into two regions by a circle of radius r= r  , which corresponds to a 

stream line when k= 0. The other branches of the curve with k= 0 are the peripheries of the channel r=ε, r= 1 and the parts 

of the axis θ= 
2


between two peripheries. In the region I (ε ≤ r ≤ r  ), the stream lines are obtained as k assumes 

negative values between 0 and minimum value k 1(corresponding to the degenerate stream line for r= r min ). In the region II 

(r  ≤ r ≤ 1), the stream lines are obtained as k assumes positive values between 0 and maximum value k 11 ( corresponding 

to the degenerate stream lines for r= r max ). At these degenerate points, both the radial and transverse components of 

velocity in the cross section vanish. Thus the stream lines of motion through the points (r min , 0), (r max , 0), (r min , ), (r

max , ) are straight lines and the motion in opposite directions about two pairs of straight lines. It is found for ε= 0.5, r min

= 0.79, k1= -0.02404, r  = 0.87, r max = 0.96, k11 = 0.00003. The figure gives the projection of the stream lines on the cross 

section of the channel when ε= 0.5 for some values of k. Similarly for the lower liquid it is found that for  ε= 0.5, r min = 

0.0.64, k1= -0.02404, r  = 0.523, r max = 0.74, k 11 = 0.00003. 
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