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ABSTRACT 

 For the highly nonlinearity conditions, it is so much difficult to obtain exact solution of Einstein’s field equations. 

Many authors have been working on the investigation of exact solution of Einstein’s equation. One of these solutions, 

Schwarzschild uniform density solution is unphysical. In this paper, we have applied the Adler method to obtain Einstein’s 

equations solution in use of different equation of state. We got a new solution although it is Tolman’s solution no IV. But 

our solution is different and original. We have described the obtain solution in terms of two new variables. Also we have 

shown that maximum mass of 1/3 the fluid radius (in geometric units) which is less than Adler’s 2/5 or Schwarzschild 4/9.  
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INTRODUCTION 

 Uniform density solution [1] is unphysical because velocity of sound becomes infinite if ρ  constant. A small 

number of solutions by authors [2, 3, 4, 5] with non-uniform density distribution which have been obtained are valuable 

and interesting because they provide some insight into the effects of relativity on the interior structures of stars. In this 

paper, one such solution is studied. In section-2, the solution found by Adler [2] is reviewed. There is a misprint in 

equation (3.3d) of Adler’s paper which we have corrected in this section. Some interesting properties of Adler’s solution 

are studied in section 3. In section 4 we have shown our new solution by using the method found by Adler. This is a new 

solution but no different from Tolman’s [3] solution no IV. Finally some interesting properties of the solution are studied 

and defined the results in two new variables x and y in section 5. For this solution we have shown that for a finite radius     

( 0r ) of the fluid sphere
3
1

r
m

0

0  , where 0m  is the mass of the fluid sphere. The star collapses if 
0

0

r
m

 exceeds
9
4

. 

Buchdahl [4] has shown that the condition 
9
4

r
m

0

0   is true in general. 

ADLER’S STATIC SPHERICALLY SYMMETRIC INTERIOR SOLUTION  

Let us take the static spherically symmetric line element in the following form, 

             ds 2 = -N 2 (r)dt 2 + 
(r)G

dr
2

2
 + r 2 (d 222 dsinθθ  )                                                                 (1) 

Einstein equation without cosmological constant is  

                      
μνμνμν T8πRg

2
1R                                                                                                (2) 

International Journal of Applied 
Mathematics & Statistical Sciences(IJAMSS) 
ISSN: 2319-3972  
Vol.1, Issue 2 Nov 2012 17-26 
© IASET 



18                        M. A. Kauser & Q. Islam 

 

For a perfect fluid energy momentum tensor T  is given by 

                      μννμμν pguρ)u(pT                                                                                        (3)                                        

For the metric (1), equation (2) gives 

                     1)2G
dr

2dG
(r

2r

1
ρ8π                                                                                        (4)  

                      )NGN
dr
dN(2rG

Nr
1p8π 22

2                                                                          (5) 

                      )
dr

dG
dr
dN

2
r

dr
NdrG

dr
dGN

2
1

dr
dN(G

Nr
1p8π

2

2

2
2

2
2                          (6)                                                                                                                       

From (5) and (6) we obtain  

        
)Nr r(N

2N
)Nr r(N

)GNr-Nr2(N
dr

dG 222







   

          or, Q(r)P(r)T
dr
dT

                                                                                                           (7)  

where  

          (r)GT(r) 2 ,  

          
)Nr r(N

)Nr-Nr2(NP(r)
2




                                                                                                        (8)  

  and   
)Nr r(N

2NQ(r)


                                                                                                                   (9) 

Solution of (7) becomes simple if we put P(r) = Q(r).  

Now the P(r) and Q(r) are the equal if 

       Nr-Nr 2  = 0  

      or, 
r
1

N
N





  

Integrating this we obtain,  

      log(2B)r log)Nlog(   

      or, 2BrN                                                                                                                                (10) 

Again integrating it we get   

           2BrAN                                                                                                                          (11)  
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 where A and B are constants. 

 
 dr P(r)

e(7)I.F.of  

Therefore, the solution of (7) is  

         dreQ(r)Te P(r)drdr P(r)  

   

          or, drCe1T
drP(r)                                                                                                            (12)  

Now, P(r) 
)Br3r(A
)Br2(A

2

2




   [putting the value of N from (11)] 

)dr
3BrA

4Br)
r
2(P(r)dr 2
   

                 )3Brlog(A
3
22logr 2  

    
3
2

2

2
P(r)dr

)3Br(A

re


  

So from (12) we get 

       
3
2

2

2

)3Br(A

rC1T


   

 i.e, 
3
2

2

2
2

)3Br(A

Cr1G


                                                                                                          (13)  

Sometimes it is convenient to replace G(r) by another function m(r) defined by  

        
r

2m(r)1(r)G 2           

So from (13) we get  

             
r

2m(r)1
)3Br(A

Cr1
3
2

2

2




  

          or, 
3
2

2

3

)3Br2(A

Cr1 m(r)


                                                                                                      (14) 

If 0r  is the radius of the fluid sphere and 0m its mass, then we have  
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3
2

2
0

2
0

0

0

)3Br2(A

Cr 
r

m ε


                                                                                                  (15) 

From (5) we get  

                       )G(1
r
1G

BrA
2Br 

r
2 p8π 2

2
2

2 


  

On the surface of the sphere p = 0, 0rr  .  

This implies  

              2ε)2ε(1
BrA

Br
2

0

2
0 


  

            or, 02)B(5εr Aε 2
0                                                                                                 (16)  

Also we have by matching with the Schwarzschild exterior solution  

              ε21r BA 2
0                                                                                                           (17) 

          or, ε21εr BεAε 2
0                                                                                                (18)  

Subtracting (16) from (18) we get  

                  B 
)2ε- (12r

ε
2

0

                                                                                                        (19)  

Putting this value of B in (17) we get  

                
)2ε- (12

5ε-2A                                                                                                               (20)  

From (15) we get  

                     
3
1

3
2

2
0 )2 ε- (1

)ε-(1
r
2 ε-C                                                                                                                            (21)  

Now from (11)  

                    2

0

)
r
r(

)2ε- (12
ε

)2ε- (12
5ε-2N    

                or, 2
1

2 )2ε- )(1yε
2
1ε

2
5-(1N


                                                                             (22)  

Where 
0r
ry  .  

From (13) we get  
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3
2

2

23
2

2

)yε
2
1ε

2
5-(1

y)ε-(12ε-1G


                                                                                              (23)  

Also from (14) we get   

                   

3
2

2

33
2

0

)yε
2
1ε

2
5-(1

y)ε-(1m
m(r)


                                                                                          (24)  

From (5) pressure p(r) is given by   

            ])yε
2
3ε

2
5-(1)ε-(1)yε

2
1ε

2
5-(1[G 

r4π
εp(r) 3

2-23
2

1-22
2
0

                        (25) 

There is a misprint in equation (3.3d) of Adler’s paper which has been correct in equation (25).  

Similarly from (4), density distribution is given by   

            }
yε

2
3ε

2
5-1

y2ε-}{3
)yε

2
3ε

2
5-(1

)ε-(1{ 
r4π
ερ(r)

2

2

3
2

2

3
2

2
0 

                                              (26) 

PROPERTIES OF THE SOLUTION     

   Central density cρ is obtained by putting y = 0 in (26). We get  

           
3
2

2
0

c

ε
2
5-1

ε-1 
r4π

3ερ


















                                                                                                         (27)  

 We see from (27) that the central density cρ is a function of
0

0

r
mε  . Clearly for a fixed 0r , the mass 0m  is a 

function of 0ρ . 0m  is maximum if  

                        0
dρ
dm

c

0     

                        0
dρ

)
r

m
d(

c

0

0

   [Since by assumption 0r = constant]   

                    0
dρ
dε

c


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                        
dε

dρ c                                                                                                         (28)                                                                                          

From (28) we get  

                    
5
2ε   00 r

5
2m    

 Thus for a fixed 0r  maximum is given by 00 r
5
2m  . This may be compared with the maximum mass 

00 r
2
1m   obtained in the Schwarzschild interior solution by demanding that the Schwarzschild radius not be exterior to 

be fluid sphere. It should be noted that 0r5
2

< 0r2
1

. In the solution found by Adler we see that 0m  cannot exceed 0r5
2

 

whereas in the Schwarzschild interior solution 0m  is bounded from above by  00 r
2
1m  .  

Central pressure cp is obtained by putting y = 0 in (25). We get  

                      
]

ε
2
5-1

ε-1

ε
2
5-1

1[ 
r4π
εp

3
2

2
0

c




















                                                                          (29)  

Now cp  becomes infinite if  
5
2ε    00 r

5
2m    

Hence  00 r
5
2m   

Schwarzschild interior solution has the similar property that cp  becomes infinite when  
9
4ε   which implies 0m < 0r9

4
.  

A NEW SOLUTION [TOLMAN’S SOLUTION NO. IV]   

 In this section we have shown that a new solution derived by using the Adler’s method. It is nothing but Tolman’s 

solution no IV.  

    In (7) let us put 
Q
Q

r
3P(r)


  . Then we get 

           
)Nr r(N
NrNr3N

N
N

r
3

)Nr r(N
N2r-Nr22N 22











  

           or, 0NrN-NNrNr 222                                                                                            (30)  

Put 2N α   in (30), then  

    N2N  α  , N2N N2 α 2    
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 Thus (30) becomes  

            0 αr-αr 2     

          or, 
r
1 

α
α





  

       barα 2  , where a and b are integrating constants.  

     barN 22                                                                                                                        (31) 

       barN 2    

Now integrating factor of (7) is given by  

   I.F =  drP
e   

         =  Q)ln(r3

e    

         =  
Qr

1
3    

Therefore, the solution of (7) is  

            dr
Qr

1Q
Qr

1T 33     

                         = drr -3  

                        = d
2r
1

2  , where d is a constant of integration.  

                        = 
2

2

2r
12dr    

          Qr
2r

12drT 3
2

2




   

                 = 
2

1)Qr(2dr 2 
 

From (9) we get  

               

)
bar2

2arbarr(

bar2Q(r)

2

2
2

2





   

                  or, 
b)(2ar
b)2(arrQ(r) 2

2




    
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2

12dr
b2ar
b)2(arT

2

2

2 





   

                       

1r
b
a2

)cr-)(11r
b
a(

2

22




 , where –c = 2d  

               or, 

1r
b
a2

)cr-1)(1r
b
a(

(r)G
2

22

2






                                                                                     (32) 

            

)cr-1)(1r
b
a(

1r
b
a2

(r)G
1

22

2

2



  

For this solution ρ  and p are given by 

  
22

2

2

2

)r
b
a2(1

cr-1
b

2a

r
b
a21

3cr
a

3bc1

b
aρ8π







                                                                     (33) 

     
2

2

r
b
a21

3cr
a
bc1

b
ap8π




                                                                                                           (34) 

CONCLUDING PROPERTIES OF THE SOLUTION   

 Central density cρ and central pressure cp  can be obtained by putting r = 0 in (33) and (34) respectively. We obtain    

                                  }
b
2a)

a
3bc1(

b
a{

8π
1ρ c   

                                  or, c)
b
a(

8π
3ρ c                                                                                           (35) 

Similarly     

                  c)
b
a(

8π
1p c                                                                                                              (36)  

Let  0r  be the radius of the fluid sphere. Then p = 0 when r = 0r . This implies  

                   )
a
bc(1

3c
1r 2

0                                                                                                           (37) 

From (35) and (36) we get  
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                    )p3ρ(
3
π4

b
a

cc                                                                                                     (38)  

                    )3p(ρ
3
π4c cc                                                                                                     (39)                                                                                        

Putting the values of 
b
a

 and c in (37) we get  

                     
3)

p
ρ3)(

p
ρπ(2

3r

c

c

c

c

2
0


                                                                                       (40) 

From (40) we see that  0r  depends only on 
c

c

p
ρ

. It is also clear that for a finite radius we must have 
c

c

p
ρ

> 3.  

Let 0m  be the mass of the fluid sphere. Matching with the Schwarzschild solution, then gives  

               

1r
b
a2

)cr-1)(1r
b
a(

r
2m

-1
2

0

2
0

2
0

0

0




       

or, 
]

1r
b
a2

)cr-1)(1r
b
a(

1[
2
1

r
m

2
0

2
0

2
0

0

0






                                                                                           (41)  

Putting the values of 
b
a

, c and 
2

0r  from (38), (39) and (40) in (41) we get  

            

3
p
ρ

2
r

m

c

co

o




                                                                                                                      (42)  

From (42) we see that 
o

o

r
m

 depends only on 
c

c

p
ρ

. Clearly 
2
1

r
m

o

o   if cc pρ  , 
2
1

r
m

o

o   if  cc pρ   and  

3
2

r
m

2
1

o

o   if cc pρ  . Let us put 
o

o

r
my   and 

3
p
ρ

1x

c

c 
  in (42). Then we get the equation  

                               y = 2x                                                                                                                   (43)  

The graph of (43) is a straight line passing through the origin.  
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 If we assume that 
c

c

p
ρ

 is positive then the range of x is given by
3
1x0  . But from (40) we have 

c

c

p
ρ

 < 3. 

This implies
6
1x  . Hence the range of x is further limited to 

6
1x0  . In 

6
1x0   for a fixed cρ  we have

3
ρ

p0 c
c  .  

Thus we have the following results:  

                                      
3
ρ

p c
c   and

3
1

r
m

o

o  . 
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