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ABSTRACT

For the highly nonlinearity conditions, it is so much difficult to obtain exact solution of Einstein’s field equations.
Many authors have been working on the investigation of exact solution of Einstein’s equation. One of these solutions,
Schwarzschild uniform density solution is unphysical. In this paper, we have applied the Adler method to obtain Einstein’s
equations solution in use of different equation of state. We got a new solution although it is Tolman’s solution no V. But
our solution is different and original. We have described the obtain solution in terms of two new variables. Also we have

shown that maximum mass of 1/3 the fluid radius (in geometric units) which is less than Adler’s 2/5 or Schwarzschild 4/9.
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INTRODUCTION

Uniform density solution [1] is unphysical because velocity of sound becomes infinite if p = constant. A small

number of solutions by authors [2, 3, 4, 5] with non-uniform density distribution which have been obtained are valuable
and interesting because they provide some insight into the effects of relativity on the interior structures of stars. In this
paper, one such solution is studied. In section-2, the solution found by Adler [2] is reviewed. There is a misprint in
equation (3.3d) of Adler’s paper which we have corrected in this section. Some interesting properties of Adler’s solution
are studied in section 3. In section 4 we have shown our new solution by using the method found by Adler. This is a new
solution but no different from Tolman’s [3] solution no IV. Finally some interesting properties of the solution are studied

and defined the results in two new variables x and y in section 5. For this solution we have shown that for a finite radius

m 1 m
(o) of the fluid sphere —2 < =, where M, is the mass of the fluid sphere. The star collapses if —L exceedsg.
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Buchdahl [4] has shown that the condition —2 <— jistruein general.
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ADLER’S STATIC SPHERICALLY SYMMETRIC INTERIOR SOLUTION
Let us take the static spherically symmetric line element in the following form,

dr?
G2 ()

ds?=-N2(rdt? + +r2(do? + sind2de?) 1)

Einstein equation without cosmological constant is

1
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For a perfect fluid energy momentum tensor T, is given by

T, =(@+puu, +pg,

For the metric (1), equation (2) gives

2
__ 1,467 g2
8np = r2 (r ar +G 1)
1 dN
8np= N (2rGZF—N+NGZ)
2 2 2
87tp:i(G2d—N+lNdG +rGzd '2\|+£d—|\IdG )
Nr d 2 dr dre 2 dr dr
From (5) and (6) we obtain
dG? _2(N+rN’-r2N”)G2 _ 2N
dr r(N+rN" r(N+rN"
or, ar _ P(NT =-Q(r)
dr
where
T(N=G*(),
I _ 2N
P(r):z(NHN r‘N")
r(N+rN’)
2N
d QN =—"——
nd Q1) r(N+rN"

Solution of (7) becomes simple if we put P(r) = Q(r).

Now the P(r) and Q(r) are the equal if

rN’-r’N"=0
N 1

or, ==
N r

Integrating this we obtain,
log(N’) =log r + log(2B)
or, N'=2Br

Again integrating it we get

N =A+Br?
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where A and B are constants.

SLFof (7)=e PO

Therefore, the solution of (7) is

Te—_[P(r)dr _ J~ Q) e—_[P(r)dr dr

o, T =1+ Cefp(r)drdr

2(A+ Brz) .
Now, P(r) = —————— [putting the value of N from (11)]
r(A+3Br°)
2 4Br)
S PDdr = | (= ———=)dr
-[ " -[(r A+BBr2)

= 2logr —%Iog(A +3Br?)

2

P(r)dr r

(A+3Br?)3

So from (12) we get

r2

T=1+C.
(A +3Br?)

2
3

e G2 =1+ Cr’

(A +3Br?)

2
3

Sometimes it is convenient to replace G(r) by another function m(r) defined by

_2m(r)

G2(n =1
r

So from (13) we get

2
1+ Cr ; 1 2mr(r)
(A +3Br?)3
3
oL m(r) =1+ cr s
2(A +3Br?)3

If I is the radius of the fluid sphere and M, its mass, then we have
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m, Cr,’ (15)

2
3

2(A + 3Br,?)
From (5) we get

2 2Br 1
8rp==--—"—" _.G?’-—(1-G?
P r A+Br? rz( )

On the surface of the sphere p=0, I =I;.

This implies
2
Bl 1 2e)=2¢
A +Br,
or, eA+1,° (56 —2)B=0 (16)

Also we have by matching with the Schwarzschild exterior solution

A+Br’=41-2¢ 7
or, 8A+SBr02 =g+1-2¢ (18)

Subtracting (16) from (18) we get

B_-_ & (19)
2r,” /(1 2¢)
Putting this value of B in (17) we get
_ 2-5¢ (20)
2. /(1 -2¢)
From (15) we get
2
2 (1 -¢)° 21
c - - % . (20)
© (1 -2¢)8
Now from (11)
N = 2 '58 i € (L)Z
2@-2¢) 2 J(1-2¢e) 1,
HPRE- DU IV 22
o, N =(1 28+28y)(1 2¢) (22)
r
Where Y = —.
r0

From (13) we get
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2
G2op. 2e(-e)°y’ (23)

2
3

5 1 .,
l-—e+=¢
d-Je+5ey’)

Also from (14) we get

() = m,(L-¢)3y° (24)

2
3

5 1
1-2e+ Zgy?
( S ¢ 28)’)

From (5) pressure p(r) is given by

2

2
& [Gz(l-gS-i-%Syz)_l—(1-8)3(1-284-%8)/2)3] (25)

Anr}

p(r) =

There is a misprint in equation (3.3d) of Adler’s paper which has been correct in equation (25).

Similarly from (4), density distribution is given by

2
3

(1-¢) 13- 2ey 3 (26)

€
p(r)=4nr2{

0 2 e %cy2)3 1-Ze+ “ey?
(1 2a+2£y) 2 2 y

PROPERTIES OF THE SOLUTION

Central density P, is obtained by putting y = 0 in (26). We get

_ 3¢ 1-¢ (27)
2
4mr, 1-2¢
2

Pe

m
We see from (27) that the central density P, is a function of € = —2 Clearly for a fixed Iy, the mass M, is a
r'0

function of py. My is maximum if

dm,
dp,

=0

m
d(TO)
= 0 _ 0 [Sincebyassumption Iy= constant]

dp,

de

= —=0
dp.



22 M. A. Kauser & Q. Islam

O _ 28)
de

From (28) we get

2 2
SZE :>m0=§r0

Thus for a fixed Iy maximum is given by m, = %ro. This may be compared with the maximum mass
m, = %ro obtained in the Schwarzschild interior solution by demanding that the Schwarzschild radius not be exterior to

be fluid sphere. It should be noted that %ro <%r0. In the solution found by Adler we see that m ; cannot exceed %ro

. S . . 1
whereas in the Schwarzschild interior solution M is bounded from above by m, < —r,.

2

Central pressure P, is obtained by putting y = 0 in (25). We get

g 1 1-¢ (29)
pc=4 2[ 5 - 5 ]
Tl 1.2 1-—¢
2 2

L 2 2
Now P, becomes infinite if ¢ = 5 =>m,=—1,
2
Hence m, < gro

Schwarzschild interior solution has the similar property that P, becomes infinite when ¢ = g which implies M, <%r0.

A NEW SOLUTION [TOLMAN’S SOLUTION NO. 1V]

In this section we have shown that a new solution derived by using the Adler’s method. It is nothing but Tolman’s

solution no IV.

3 !
In (7) let us put |:’(I’)=—+g . Then we get
rQ
2N+ 2rN’ - 2r*N” _§+E’_ N +3rN’+r2N”
r(N+rN’) r N r(N+rN’)
or, N2 + r*NN"-rNN' =0 (30)

Put o= N? in (30), then

o'=2NN’, 0" =2N'* + 2NN"
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Thus (30) becomes

r’a”-ra’'=0
a”" 1
or, —==
o r

= a=ar? + b, where aand b are integrating constants.
= N’=ar’+b
~N=+ar’ +b
Now integrating factor of (7) is given by
=g P
- efln(rSQ)

1
r’Q

Therefore, the solution of (7) is

1 1
TX%——IQX%dr

= —Ir‘3dr

1 . . .
2—2 +d, where d is a constant of integration.
r

2dr2 +1
2r 2

_ Qr(2dr® +1)
2

From (9) we get

2+Jar’ +b

Q(I‘) = 2
m 2ar
r(var< + +72 ﬁar2+b)
or, Q) = 2@@r * +b)

(2ar % + b)
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T_2@F+b)2mﬁﬂ
2ar’ +b 2
(%r2+1x1-crﬂ

, where —c = 2d

282 41
b
Az i@ -er?)
o G2 = b (32)
28,2 9
b
a o
. 1 Zgr +1
G

(%r2+1x1-crﬂ

For this solution p and p are given by

3bc
1+ == 4+3cr? )
gnp-d. a2 l-af (33
14222 b (1+2%r2)2
. 1 be 3cr?
8np=—- a—a (34)
b 14228
b
CONCLUDING PROPERTIES OF THE SOLUTION
Central density P, and central pressure P can be obtained by putting r = 0 in (33) and (34) respectively. We obtain
1 . a 3bc, 2a
=—{—-@0+—)+—
Pe 87[{b( " ) b}
3 ,a
orp, =—(=+cC (35)
Pe =g (b )
Similarly
1 a
P =—(=-0 (36)
‘ 8t'b
Let I, be the radius of the fluid sphere. Then p = 0 when r =TI;,. This implies
2 1 bc
h =—1-—) @37)
3c a

From (35) and (36) we get
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a 4n
= +3 38
;= 3 (P +30c) (38)
4
c= " (p.—3p.) 9
3
Putting the values of % and c in (37) we get
r,} = 3 (40)
2n(Pe +3)(Pe —3)
P c

From (40) we see that I depends only on Pe . It is also clear that for a finite radius we must hav Pe

e —>3.
Pc Pe
Let M be the mass of the fluid sphere. Matching with the Schwarzschild solution, then gives
a 2 2
. om _ (ErO +1)1 -cry”)
fo 22817241
b
a 2 2
o m, 1[17 (Ero + 10 -cry) (41)
o2 28241
b
Putting the values of %, cand ro2 from (38), (39) and (40) in (41) we get
m, 2 (42)
o ) Pey3
P.
rno P rno 1 : rno 1 :
From (42) we see that — depends only on —. Clearly — <— if p, >P,, —=— if p, =P, and
r, P. r, 2 r, 2
1 m, 2 m, 1 .
—< <_—if p, >P;. Letusput y =— and y _ in (42). Then we get the equation
2 r, 3 Iy P,
—+3
P
y = 2x (43)

The graph of (43) is a straight line passing through the origin.
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If we assume that Pe is positive then the range of x is given by 0 < X < % But from (40) we have Pe <3.

C C

This implies X <%. Hence the range of x is further limited to 0 < X < % In 0<x <% for a fixed p, we have

[
O<p. <=£.
P, 3

Thus we have the following results:

m, 1

p, < Pe ande < =

3 r, 3
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