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ABSTRACT

Following the introduction of the Schrödinger and Dirac quantum mechanical equations for the description of hydrogenic

atoms, there was a longstanding attempt to develop a similar approach which is applicable to the treatment of nuclear

reactions. There was consensus that interactions of shorter range than the Coulomb force are involved, but there was also

the strongly held view that the corresponding Hamiltonian that satisfies this requirement must be invariant to a Lorentz

transformation. The latter conclusion is questioned on the basis of a simple example involving the interaction of an

electron in an electromagnetic field. It leads to a contradiction according to which observers in different rest frames must

disagree on whether the path of the electron is curved or linear. A solution to this dilemma is provided by the assumption of a

different definition of the velocity parameter v in the Lorentz Force law, specifically that it is taken to be the speed of the electron

relative to the origin of the electromagnetic field rather than to each observer. Moreover, the requirement that the Hamiltonian

operator be invariant to a Lorentz transformation is shown to be satisfied by merely employing the same form for the operator in

each rest frame. A problem with the limiting behaviour of the Breit-Pauli Approximation short-range terms such as spin-orbit and

spin-spin coupling is shown to be eliminated by multiplying them with a momentum-dependent exponential factor similar to that

advocated much earlier by Yukawa in connection with his theory of elementary particle interactions. The relation between the

internal motion of the particles and that of the centre of mass of the system is also discussed. The evaluation of properties in rest

frames moving with high velocity relative to the centre of mass of the system under consideration can be undertaken with the aid of

the Uniform Scaling procedure rather than by explicit computation of expectation values based on solutions in which the effects of

internal and translational motion are intertwined.
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INTRODUCTION

The main tool in the XBPS theoretical model [1,2] is a Schrödinger equation whose Hamiltonian contains a relativistic free-

particle term for the kinetic energy in addition to potential terms which are short-range in nature. Specifically, the latter are

exponentially-damped, momentum-dependent operators, which in the limit of velocities much smaller than that of light,

approach those used in the conventional Breit-Pauli approximation [3-5] to the Dirac equation [6,7]. Since the XBPS

formalism is applied to describe interactions such as nuclear binding and elementary particle processes, it is evident that it
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must adhere to the strictures imposed by relativity theory for phenomena involving high relative velocities. Theoretical

aspects regarding this point will be considered in the present work, with particular emphasis on the treatment of

translational motion employed therein. This general topic will also be seen to have relevance in another important area of

quantum mechanical theory, namely the particle-wave duality interpretation of physical processes.

RELATIONSHIP BETWEEN THE SCHRÖDINGER EQUATION AND MULTI-COMPONENT

RELATIVITIC FORMULATIONS

The Dirac equation [7] is the cornerstone of a four-component theory for one-electron atoms. Just as the Schrödinger

equation [8], it can be looked upon as an eigenvalue equation, i.e. HD = E, for which the corresponding Hamiltonian

consists of a 4 x 4 matrix of operators and the eigenvectors are corresponding four-dimensional vectors called spinors. For

a time-independent HD the same type of separation of time and spin-spatial variables can be obtained as for the Schrödinger

equation. In this case E becomes a four-dimensional constant matrix and the spinors which serve as solutions to the

corresponding time-independent Dirac equation are functions of spatial and spin coordinates only. Dirac was led to this

equation by relativistic considerations [9], especially the desire to accurately describe atomic fine structure which is known

to arise from the motion of the electrons and thus could not be satisfactorily represented by means of the original

electrostatic Schrödinger equation. Since the goal of the present study has been the quantitative description of systems

involving higher relative velocities than those of electrons in atomic systems, it is natural to ask whether the inherently

relativistic nature of the interactions involved is compatible with a theoretical treatment in which the multi-component

spinor wave functions analogous to those of the Dirac equation are not employed. To answer this question, it is important to

examine the nature of the Dirac four-component theory in some detail.

As already noted, the differential equation in this formulation employs fourth-order operator matrices. In the time-

independent version, the energy is represented by a constant matrix, whereas HD itself contains non-vanishing elements of

several types, including some in off-diagonal positions. As with all equations involving matrices, it is possible to apply a

unitary transformation to each of the objects appearing in it to obtain an equivalent differential equation. The constant E

matrix is unaffected thereby, but the spinor eigenfunctions as well as the Hamiltonian matrix will generally have a different

appearance after such a transformation. An interesting possibility suggests itself as a result, namely that a particular unitary

transformation U might succeed in producing a diagonal form HD’ for the Dirac Hamiltonian. The transformed Dirac four-

component equation thus takes on the following appearance:

where U = ’ gives the relationship between the original and transformed spinor eigenfunctions.

Foldy and Wouthuysen [10] adopted such an approach and succeeded in bringing the free-particle Dirac

Hamiltonian to diagonal form by using
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In this definition i and ß are the four-dimensional Dirac matrices [9], and Ep and mo are constant matrices for (p2

+ mo
2)1/2 and the electronic rest mass respectively (in a system of units in which c = 1). The corresponding diagonal

elements in the free-particle HD’ are then H1 = H2 = -H3 = -H4 = Ep, which is the Einstein relativistic energy for a system of

rest mass mo and momentum p. The same one-electron term also appears in the XBPS Hamiltonian (see Table I of Ref.

[2]). When the Coulomb potential  = -Z/r is introduced, the situation becomes more complicated, but Foldy and

Wouthuysen suggested a series of contact transformations which in principle can achieve the desired diagonal form of HD’

in this case as well. By carrying out a finite number of such transformations it is possible to obtain an approximation to the

Dirac equation which is closely related to that used in the Breit-Pauli formalism [11].

The main interest in the FW transformations in the present context is less in explicit mathematical details, but

rather the theoretical implications of employing such formal diagonalization procedures in the first place. Once such a

unitary transformation is applied, the Dirac equation reduces to a series of four ordinary Schrödinger equations involving

H1, H2 H3 and H4, respectively, namely:

The simplest way of proceeding is thus to solve each of these Schrödinger equations separately, obtaining four

complete sets of eigenfunctions for each component. Under the circumstances it would no longer be necessary to employ

spinor eigenfuntions with more than a single non-zero component. For example, if 1’ is an eigenfunction of H1 then the

spinor (1’, 0, 0, 0) is an eigenfunction of HD’ as well, with the same energy eigenvalue as in the ordinary Schrödinger

equation, H11’ = E1’. If the individual eigenfunctions for each component Hamiltonian form an orthonormal set, as is

always possible, such a choice of spinor wave-functions with only a single non-zero component would be orthonormal as

well. A reverse transformation then allows one to generate spinor eigenfunctions for the original HD operator from each of

the above simpler spinor functions with a single non-zero component:  = U-1’ There is thus clearly a one-to-one

correspondence between the two sets of spinor eigenfunctions with identical eigenvalues.

As a result there are essentially (exactly in the case of free particles) four times as many spinor eigenfunctions of

the Dirac equation as there are simple eigenfunctions of any one of the above Schrödinger equations involving H1 to H4, as

has been pointed out earlier by Bethe and Salpeter [12]. The question that arises from this observation is whether the

additional solutions of the Dirac equation are important physically. In the case of the free-particle Hamiltonian, the answer

is clearly no, since the four diagonal Hamiltonian operators are identical except for sign. For each eigenfunction of H1 there

is an identical one for H2, H3 and H4. The corresponding eigenvalues are equal for H1 and H2, and only of opposite sign for

H3 and H4. It is common to think of the pairs of equal eigenvalues as corresponding to different spin directions of the free

particle, but such a distinction is not essential. Instead one can have a complete set of solutions for both spin directions

(assuming the system involved is a fermion) for each of these operators. This is the way the XBPS Hamiltonian is treated,
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for example, with all degenerate components being generated by the same operator. Under the circumstances, it is a matter

of semantics whether one refers to such a treatment as a one-component or a two-component method. At least for the free

particle, half of the solutions of the Dirac equation are simply redundant, serving no useful purpose from a physical point of

view. Moreover, the negative-energy solutions don’t really tell us anything new either. In summary, in the free-particle

example, solution of a single Schrödinger equation tells us all we need to know.

When a potential is added to the Dirac Hamiltonian there is no longer such a simple relationship between the

positive- and negative-energy solutions. This is because the potential has the same sign in all four diagonal terms of HD

whereas the kinetic energy terms for the first two components continue to differ in sign relative to the last two. Nonetheless,

there is still a clear mathematical relationship between the two sets of spinor eigenfunctions which allows corresponding

positive- and negative-energy solutions to be converted into one another by simply changing the signs of E, p and the

electronic charge e and interchanging the first two components with the last two [12,13] relative to the original solution.

The new function thus corresponds to a system in which the electron of the original problem is replaced by its antiparticle.

Dirac originally used this relationship to formulate his hole theory of the electron, which ultimately led to his prediction of

the existence of the positron [6]. Furthermore, since the added potential only appears in the diagonal positions of HD, it

seems likely that the interesting simplifying feature of the transformed free-particle Dirac equation, namely H1 = H2 and H3

= H4 in the diagonal HD’ matrix, is also a characteristic of the corresponding hydrogenic version. In other words, all the

physically meaningful positive-energy solutions of the Dirac equation with a central-field potential can also be obtained

from a single Schrödinger equation.

The same type of analysis can be carried over to multi-component treatments of many-particle systems, such as the

Bethe-Salpeter equation for helium-like atoms [14]. In this case, one can generalize the Dirac approach to define

corresponding differential equations whose solutions are spinors of dimension 4N, where N is the number of particles. Such

matrices can also be diagonalized, at least in principle, and the resulting Hi diagonal elements must have eigenfunction sets

which can be used to produce the 4N-component spinor solutions of the original system of coupled equations. If one

continues to allow each of these Hamiltonians Hi to act on the entire spin space spanned by the particles, it again seems

possible (and even likely) that all physically meaningful results for the corresponding positive energy states can be obtained

by solving a single many-particle Schrödinger equation. Furthermore, as long as the original multi-component set of

equations is invariant to a Lorentz transformation [14,15], so must the corresponding diagonal (uncoupled) set as well.

In summary, because of the form of the Dirac equation and its generalizations, it appears to always be possible to

obtain a completely equivalent version which decouples the various components. This being the case, there is no reason to

rule out the possibility that a corresponding Schrödinger equation might exist whose solution contains all the physically

meaningful information about a given system which can be obtained from quantum mechanical theory. Since an analogous

multi-component treatment for nuclei and elementary particles is not known, it therefore seems reasonable to search for a

concrete form of the Schrödinger equation which is capable of attaining the same objective.

Indeed, once such a form is known, it is always possible to construct a multi-component version by writing down a

diagonal matrix containing Hamiltonian operators corresponding to different combinations of particles and antiparticles and

subjecting it to an arbitrary unitary transformation. The latter complication would serve no useful purpose, however. From

this point of view the advantage of the original Dirac multi-component formulation is clearly that it provides a quite
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satisfactory description of the desired atomic interactions which is superior to any Schrödinger equation yet discovered. It

brings with it a large number of redundant solutions, however, which either apply to a different physical system than that of

primary interest, or are simply repetitions of other useful solutions. Under the circumstances, when dealing with interactions

for which no appropriate multi-component formulation is known, such as in the present set of applications, there is no

compelling reason to expect that a Schrödinger-type approach may not offer the most straightforward means of achieving

a suitably accurate description of the phenomena of interest.

THE ROLE OF TRANSLATION IN THE MULTI-COMPONENT DIRAC THEORY

One of the mathematical characteristics of the multi-component Dirac equation [7] which sets it apart from its non-

relativistic counterparts is that it can be brought into an explicitly covariant form [15]. The variables contained in it

represent exclusively internal degrees of freedom, however. Implicit in this formulation is therefore the complete separation

of internal motion from that of the centre of mass. Such an arrangement for the theory seems intuitively obvious, but as

pointed out in Sect. 3 of Ref. [2], a mathematically sound procedure for effecting the desired coordinate separation is only

given explicitly for a non-relativistic treatment of the motion of several particles. Nonetheless, the failure to obtain a clean

separation of internal and centre-of-mass coordinates in the XBPS Hamiltonian leads to some hitherto unexpected effects

for the description of short-range interactions, particularly a relationship between the strength of the various Breit-Pauli

terms (Table I of Ref. [2]) and the magnitude of the translational energy.

The question that therefore needs to be examined more carefully is whether the separation of internal and centre-

of-mass coordinates in the Dirac equation is consistent with experimental observations. In this context, it is well to note that

there is strong theoretical evidence [16,17] that the distance between two objects is measured to be different in two inertial

systems moving with non-zero relative velocity to one another. Experiment has demonstrated that the rate of an atomic

clock is slowed as it increases its speed relative to a certain rest frame. For example, in the Hafele-Keating study of

circumnavigating atomic clocks [18], the Earth’s Centre of Mass (ECM) satisfies this requirement. Therefore, since the

speed of light is the same in every rest frame (after taking account of gravitational effects), it follows that distances expand

as the rates of clocks slow down [19].

As an example, consider the computation of the mean distance between the electron and proton in the hydrogenic

ground state. In quantum mechanics this quantity is given as the expectation value <|(re-rp)|> for the corresponding

eigenfunction . The distance between these two particles is not fixed but the above consideration should be relevant in

this determination, that is, it seems reasonable to expect that a different result should be obtained if the centre of mass of an

H atom is at rest with respect to the observer or if it is moving relative to him at high speed. If the total wave function is

always written as a product of two factors only one of which depends on the internal coordinates, however, as is the

consequence of separating out the centre-of-mass motion, it is clear that the expectation value in question cannot depend on

the translational state of the system. The internal part of the wave function is completely independent of the motion of the

centre of mass. If, on the other hand, the two types of motion become increasingly intertwined as the translational energy

becomes large compared to the system’s rest energy moc
2, one can at least see a mechanism in which the distance scaling

effects [16,17,19] might evolve in a natural way from the computations.

One might argue that it is not really necessary to obtain different results for internal properties of systems as a

function of their translational state. Instead, one can compute the property for the system at rest and use the time and



16 Robert J. Buenker

Impact Factor (JCC):6.2284 NAAS Rating 3.45

distance relationships of the corrected relativity theory [16,17] (uniform scaling method) to obtain the corresponding results

when the system is moving relative to the observer. The situation is similar to that encountered in the computation of the

energy lost when positronium decays, namely 2moec
2, in accordance with the classical mass-energy equivalence relation. It

seems fair to say that such interpretations may be overly simplistic, however, and more importantly, that they may hinder

the development of a more internally consistent formulation of mechanical theory as a whole.

In the case of property computations corresponding to states of high translational energy, this line of reasoning

suggests that the separation of internal and centre-of-mass coordinates is an approximation whose.validity is lost at

velocities close to the speed of light. An attempt to recast the XBPS Hamiltonian of Table I of Ref. [2] in terms of centre-

of-mass and relative coordinates leads to cross terms involving odd powers of both types of conjugate momenta. Although

matrix elements for such terms cannot mix configurations of different translational momentum k, they can connect species

of different angular momentum quantum number l.

Since the differentiations of the centre-of-mass momentum operator always lead to factors of |k| in the

corresponding matrix element expressions, it is clear that no such mixing can occur for zero translational momentum. By

the same token, however, it seems reasonable to expect that the magnitude of such interactions increases steadily as the

speed of the centre of mass increases. This would mean in effect that different internal configurations are used to describe

states of high translational energy than are required for the corresponding system when it is at rest with respect to the

observer. Since the translational kinetic energy operator commutes with any Hamiltonian which is a function of the inter-

particle distances only, none of this prevents the total eigenfunctions from having a well-defined translational energy. This

effect is seen to arise naturally in the XBPS formulation from the fact that the cross terms involving both types of

coordinates have only vanishing matrix elements between functions of different k.

Lorentz Invariance Condition for Quantum Mechanical Treatments: Application of the Bohr Correspondence

Principle

The above discussion also raises a question about the way in which the Lorentz invariance condition of Einstein’s special theory of

relativity [20] is applied in quantum mechanics. In the classical theory, the discussion of relativistic effects is invariably tied up with

the translation of various systems. By contrast, the Lorentz invariance property of the Dirac equation [15] for a particle moving in a

central field refers to a non-translating system, i.e. only internal coordinates are involved. In classical expositions of special

relativity theory [20], however, the treatment of two interacting systems is generally given in terms of the original Cartesian

coordinates of each particle. For example, in discussing the problem of two charged particles moving with the same velocity, Sard

[21] proceeds as follows. In the inertial system of the charged particles themselves, the equation of motion is:

]

and
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where the two particles are denoted by the indices A and B, the direction y is perpendicular to their momenta, and yt refers

to a coordinate measured in the moving particles' own inertial system St. These equations express the fact that from the point of

view of the particles themselves there are no magnetic forces (see the discussion in Sect. VI of Ref. [22]).

The standard relativistic treatment of electromagnetic interactions is based on the premise that the components of

the electric E and magnetic B field vectors transform according to the following equations [23] (c is the speed of light in

free space, 299792458 ms-1):

Einstein derived this set of relations [20] by assuming that Maxwell's equations must be invariant to a Lorentz

transformation of spatial and time coordinates between different rest frames. It was further assumed that the components of the

electromagnetic force F on charged particles e are given in terms of the above field components by the Lorentz Force equation:

In this equation it has been generally assumed that v is the velocity of charged particles relative to the observer, a

point which will prove worthy of further discussion subsequently [24].

There is ample evidence [25] that the Lorentz Force satisfies the equation of motion expected from Newton's

Second Law, namely:

i.e. the force F equals the time rate of change for the relativistic momentum p = γμv, with γ =

(1-v2c-2)-0.5 and μ is the rest mass of the particle/electron. Nonetheless, as will be seen from the following concrete

example which makes use of this equation, there is still an uncertainty in the definition of v therein when the observer is

located in a different rest frame than that of the laboratory.

Consider the effects of an electromagnetic field with only the two components, Ex and By, acting on an electron, as has

been done in Ref. [25]. From the point of view of an observer located at the origin of the field, the electron will initially move along

the x axis. This is because the Lorentz force F only depends on Ex at the instant the field is applied since the value of v=0 negates

any effect from the corresponding magnetic field component By. This situation changes as time goes by and the electron is

accelerated to non-zero speeds. The v B term gradually produces a force component in the z direction, causing the electron to

veer away from its initial path. Depending on the relative strengths of the constant values of Ex and By, the amount of deflection can

be quite significant over time. This situation is easily reproduced in the laboratory and there is no doubt that it is consistent with the

Lorentz Force law.

Next consider the same example from the perspective of an observer co-moving with the electron. Since the speed

v of the electron relative to the observer is zero at all times, it follows according to Einstein’s transformation law that the

magnetic field has no effect. As a result one expects that, from the perspective of this observer, the electron continues
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indefinitely along a straight line parallel to the x axis. This predicted trajectory is therefore clearly distinguishable from

that discussed first from the vantage point of the laboratory observer.

This behaviour raises the question of whether it is reasonable to expect that the electron would appear to follow a

different path for the two observers. No one has ever ridden along with an accelerated electron or other charged particle to

verify that the predicted straight-line trajectory would actually be found by such an observer. Since the curved path

expected from the laboratory perspective is routinely observed, however, it would therefore seem on the contrary that the

straight-line result is pure fiction, an artefact of a physically unrealistic theory.

Does this example prove that Galileo's RP does not apply to electromagnetic interactions? Clearly not [24]. The

reason is because there is another quite straightforward way to satisfy both Maxwell's equations and the RP at the same

time, namely to insist that all observers, regardless of their state of motion, see exactly the same results of any given

interaction. In particular, the hypothetical observer co-moving with the accelerated electron must record the same curved

trajectory as is viewed from the laboratory perspective.

The measured values for the parameters of the electron's path may still differ for the two observers, however. This

is because the units in which they express their respective measured values may not be the same [16,17.19]. We know, for

example, from the time-dilation experiments [18] that the clocks they employ to measure elapsed times can run at different

rates. This fact does not change the above conclusion about the trajectory of the electron in the above example, however.

There is no reason to doubt that all observers should agree that a curved path is followed as a consequence of the

interaction of crossed electric and magnetic fields.

There is a detail that needs to be considered in both Maxwell's equations and the Lorentz Force law which is

crucial for deciding how to apply the RP to electromagnetic interactions. It is the interpretation of the velocity that appears

in both expressions. At some point in history, physicists came to the consensus that v is the velocity of the electrons or other

charged particles relative to the observer in any given interaction. This decision has quite important consequences vis-à-vis

the measurement process in general. It means that the results of any measurement are thought to depend on the perspective

of the observer. Measurement is subjective, in other words.

There is a clear alternative interpretation [24] of the velocities which appear in Maxwell's equations and the

Lorentz Force law, however, one which eliminates the need to assume that observers can disagree on the trajectories of

particles affected by these interactions. It is simply necessary to assume that the variable v in these equations is the velocity

of the electron relative to the rest frame where the electromagnetic field originates. This is a quantity which all observers

can agree upon at least in principle. Just changing the unit in which velocity measurements are expressed can have no effect

on the measured trajectory of the particle. In particular, an observer co-moving with the electron in the example of the

previous section can therefore use Maxwell’s equations and the Lorentz Force law to conclude that the path being followed

is exactly the same as reported by his counterpart located at the origin of the electromagnetic field, except perhaps for a

difference in the sets of physical units in which each expresses his results.

The above interpretation allows for a much less restrictive interpretation of the RP. It is not necessary that the form

of the physical law describing this or any other interaction be invariant to a particular space-time transformation in an

arbitrarily chosen rest frame. In the case of electromagnetic interactions, it is only necessary that the same laws, in this case

Maxwell's equations and the Lorentz Force law, apply in any rest frame where the electron currently exists. Its velocity v
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relative to the origin of the interaction uniquely determines the magnitudes of the electric and magnetic fields as well as the

corresponding force acting on it. By contrast, the velocity of the electron relative to the observer himself plays no direct

role in determining such quantities, thereby removing any element of subjectivity from the process. All observers,

regardless of their own state of motion, must agree on the results of the interaction, except that they will generally not agree

on the numerical values of their measurements because of differences in their respective choice of physical units.

In quantum mechanics the equation of motion is of a different form, however, namely one in which the wave

function of a system is sought rather than a fixed trajectory. If the corresponding Hamiltonian is given in terms of the

coordinates of each particle rather than assuming a separation into internal and centre-of-mass coordinates, similarly as in

the example from classical relativity theory discussed above, the following possibility suggests itself. The laws of nature

must be the same in all inertial systems according to the principle of relativity [20.26,27]. In the case of a quantum

mechanical formulation, this condition can be fulfilled if the Hamiltonian operator simply has the same form for all

observers. The coordinates on which this operator depends necessarily vary from one inertial system to another in

describing a given system.

If two observers moving relative to one another start out with the same Schrödinger or Dirac equation (H - )  =

0, how then can they come to different conclusions about the properties of a system in their respective inertial systems? The

answer lies in the fact that there is more than one solution to the above quantum mechanical differential equation. The

computation of the properties of a given system thus requires not only the solution of the corresponding equation, but also

the correct identification of one of the resulting eigenfunctions as that describing the state of the system actually observed.

For example, the hydrogen atom ground state in the conventional language actually corresponds to an infinite number of

different translational states. If two observers disagree on the magnitude of the translational energy of a given system, they

will simply choose different solutions of the same differential equation to describe it. This possibility distinguishes

quantum mechanics from its c1assical counterpart, for which a definite answer is expected for each set of initial conditions.

What these considerations show is that the principle of relativity can be incorporated into a quantum mechanical theory by

simply requiring that the Hamiltonian H(q,p,t) of any system always be expressed in terms of the coordinates of a given observer.

Applying the Lorentz transformation to H(q,p,t)-E(t) simply gives back the same expression in terms of the coordinates of a

different inertial system, i.e. H(q’,p’,t’) - E(t’). Under the circumstances it is not really necessary that the two quantities be exactly

equal, i.e. that H(q,p,t)-E(t) = H(q’,p’,t’)-E(t’), in order to satisfy the principle of relativity. Rather it is sufficient that the form of H-

E be the same for all observers, so that each of them can generate the same set of solutions to the corresponding quantum

mechanical equations of motion from which the pertinent translational states corresponding to different perceptions of the same

physical system can be properly selected. If the Hamiltonian is incorrect for any reason, there will inevitably be disagreement

between prediction and observation on this basis, so this possibility still excludes the use of distinctly non-relativistic terms such as

p2/2m in representing the kinetic energy. On the other hand, it suggests that failure to find a covariant form for H-E, i.e. one that

satisfies the condition H(q,p,t) - E( t) = H(q’,p’,t’) - E(t’) upon application of a Lorentz transformation, does not constitute proof

that the corresponding quantum mechanical formulation is defective.

Since the present discussion involves a comparison of the theory of quantum mechanics with its classical

counterpart, it is relevant to consider the implications of the Bohr correspondence principle [28] in this regard. In

accordance with this prescription, it must be expected that the quantum mechanical formulation reverts to the classical one
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in limiting situations in which the less general theory has established validity. One difficulty with applying this principle to

a relativistic quantum mechanical theory is that two separate limiting processes are involved, as commonly achieved by

setting Planck’s constant h to zero and the speed of light in free space c to infinity. The minimal condition which must be

fulfilled with regard to the theory of special relativity is that the classical limit of the quantum mechanical equations of

motion can be cast in covariant form.

For this purpose one typically employs the relativistic four-vectors [29] (p,iE/c and (A, i). The Breit-Pauli terms

[5] are closely related to the classical magnetic interactions containing the vector potential A, as has been discussed in

detail by Slater [30], so the ingredients for such a covariant limiting form are present when a Hamiltonian containing such

interactions is employed. Because of the linearity of the Lorentz transformation, it is clearly essential that the r-3

dependence of the Breit-Pauli terms (see Table I of Ref. [2]) tend toward r-l as a result of the limiting process. Since a

constant velocity is always involved in such a transformation, however, it is not difficult to imagine how this occurs. Under

these conditions the angular momentum

l = r x p itself varies as the first power of r, and since the spin-independent Breit-Pauli terms are second-order in 1

(or r • p in the case of the Darwin term), the necessary changeover from r-3 to r-l variation is ensured. The corresponding

spin-dependent terms can be plausibly ignored since they have no classical analogue and can thus be assumed to vanish in

the pertinent limiting process.

The fact that the Breit-Pauli terms can be derived as an approximation to the Dirac equation [3-5], which itself is

invariant to a Lorentz transformation, is perhaps the best indication that such a limiting relationship can be satisfied by a

differential equation containing such momentum-dependent short-range interactions. The essential point remains, however,

that it is not necessary that the relativistic quantum mechanical theory be Lorentz-invariant. As discussed above, the

principle of relativity is automatically satisfied by employing the same functional form in all inertial systems for the (H-E)

operator appearing in the pertinent Schrödinger equation.

The Role of Short-Range Interactions in High-Energy Processes

Ever since the first scattering experiments on nuclei, it has been recognized that forces of shorter range than those of the

Coulomb effect and gravitation are at work in nature. Yukawa [31] was the first to suggest that the interactions in question

were exponential in character, but he assumed a potential which varies as r-1 as the internuclear distance approaches zero. In

the XBPS model the short-range interactions vary as r-3 over a large range of interparticle distance, until the momentum-

dependent damping factors begin to have a dominant influence on the theoretical description (Table I of Ref. [2]). Because

the Lorentz transformation is linear in spatial and time coordinates, it is difficult to imagine an equation of motion involving

a potential which is invariant to such a change in variables. By not assuming the usual separation in terms of internal and

centre-of-mass coordinates, it has been possible to employ exponentially-damped Breit-Pauli r-3 potentials in the XBPS

model to obtain a realistic description of nuclear binding [1,2,22]. The combination of short-range momentum-dependent

potentials plus an interdependence of internal and translational motion allows a simple explanation for the fact that particles

and antiparticles can interact strongly with another. In the inertial system in which the centre of mass is at rest, p1 = -p2 ,

from which it follows that particles of equal rest mass must move with the same speed relative to their midpoint. This

circumstance allows maximum benefit to be taken of attractive short-range interactions which are momentum-dependent,

whereas a much weaker effect is expected for two particles with greatly different rest masses.
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It would appear then that not only is it consistent with relativity theory to employ such short-range interactions to

describe high-energy processes, but even that it is actually essential that this be done in order to obtain satisfactory

agreement with experimental observations. The arguments of the last section show how the results of the corresponding

Schrödinger equation can be interpreted in a manner consistent with the principle of relativity, even though a covariant

form for its Hamiltonian appears to be excluded. Furthermore, by not factoring out the centre-of-mass motion, it is possible

to explain at least in principle how the properties of physical systems can vary with their translational state, as relativity

theory [16,17,19] indicates they must. None of this precludes the possibility of defining a Schrödinger or Dirac equation

which is completely independent of centre-of-mass coordinates.

Formally, one must transform to the usual system of internal and centre-of-mass coordinates and retain only the

terms of the Hamiltonian which are independent of translational variables. Solution of the corresponding differential

equation would then only produce information about states of zero translational energy. It is doubtful that such a simplified

operator would be Lorentz-invariant, but its application would have an advantage relative to Hamiltonians of the XBPS

type employed in the present work, in which the centre-of-mass and internal types of motion are intertwined.

A related question to that discussed above is whether it is essential to employ a separate time coordinate for each

particle in defining a proper equation of motion. If one believes in the prediction of remote non-simultaneity of the Lorentz

transformation, it could be argued that such an arrangement is essential [20]. It has been shown of the basis of the Law of

Causality [17], however, that this view in not correct. The results of the Hafele-Keating study [18] with circumnavigating

clocks are in complete agreement with this assessment. Furthermore, this same principle is assumed in the operation of the

Global Positioning navigation system [32,33].

The situation is even clearer if one assumes, as is done in the XBPS model, that all the particles of a given system

are referenced to the position of an observer who is always located at the origin of the coordinate system in which the

computations are carried out. In that case, it is essential to employ a single temporal variable in describing the physical

interactions. There is no need for more than a single clock with which to measure the time of events occurring in the same

inertial system. This choice is also consistent with assuming that each solution of the corresponding differential equation

corresponds to a single total energy. As a result it is possible to describe the time-dependence of the XBPS eigenfunctions

in the usual way as exp (-iEt/ ), where E is the total energy of the corresponding state. Since the particles move

independently of one another, it is nonetheless necessary to employ a separate set of spatial and spin coordinates for each of

them, but the former correspond to different length measurements in the same inertial system, thus requiring the use of only

a single unit of distance (meter stick) to determine their values experimentally.

CONCLUSIONS

There are several characteristics of the Dirac equation which are commonly misunderstood.

For example, it is not true that it is fundamentally different than the Schrödinger because of its four-component nature.

The fact is that since the Hamiltonian matrix of operators is Hermitian, it is possible to find a unitary transformation to bring it into

diagonal form, thereby producing four independent Schrödinger-like equations. This possibility was first used by Foldy and

Wouthuysen to define their relativistic equation for the description of the electronic structure of atoms.. The simplest way of

proceeding is then to solve each of these equations, thereby obtaining four sets of eigenfunctions. It is therefore always possible in

principle to completely decouple the original components represented in the Dirac equation. It is exactly this argumentation which
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is used in developing the XBPS model which employs short-range interactions to describe subatomic particles. In other words,

what one has in this model is a Schrödinger equation which employs short-range momentum dependent operators that do not

appear in the original version used to describe the hydrogen atom.

The variables in the Dirac equation for hydrogenic atoms contain only inter particle distances, so implicit in this

formulation is the complete separation of internal motion from that of the system’s centre of mass. When more than two

particles are involved, the situation becomes more complicated, however, because there is no way to completely separate

out the translational motion; this is only possible in the non-relativistic treatment. As a result, it is unavoidable that the two

types of motion become intertwined as the translational energy of the system increases.

In effect, this means that different internal configurations must be used to describe states of high translational

energy than is the case for the corresponding system when it is at rest relative to the observer. In an exact treatment, one can

restrict attention exclusively to states with zero translational energy, but when only finite numbers of basis functions are

employed, as is necessarily the case in the XBPS model, one must identify states with a minimum of translational energy for

each internal state and compute properties with the corresponding wave functions on this basis.

Over the past century, it has been concluded that the Hamiltonian operator in relativistic calculations must be

invariant to a Lorentz transformation. It has been shown in a simple example, however, that defining v in the Lorentz Force

law as the value of the electron speed relative to each observer himself, leads to a contradiction. According to that

definition, one must conclude that different observers will disagree on whether the path of the electron is curved or not. If

instead, the electron speed is always taken relative to the rest frame in which the electromagnetic field originates, the

above contradiction is removed. Different observers will always agree on the nature of the electron’s path, but they will

disagree on the values of most properties because they use different units in which to express their respective values. The

uniform scaling method allows one to account for these differences on a completely quantitative basis.

The restrictions of the Relativity Principle can be achieved by requiring that the Hamiltonian of any system always be

expressed in the coordinates of each observer. Applying the Lorentz transformation (or any other that relates the two rest frames)

results in identically the same operator in any other inertial frame. Each observer can then generate the same set of solutions in his

own coordinate system. This line of argumentation thus supports the view of the XBPS model that the Hamiltonian operator can be

chosen solely on the basis of its ability to obtain satisfactory agreement with experimental findings.

The above considerations allow one to employ operators in the Hamiltonian which are of shorter range (r-3 instead

of only r-1) than those in the original Schrödinger and Dirac equations.

Problems with the limiting values of the computed energies are avoided by multiplying the Breit-Pauli operators with

Yukawa-type momentum dependent exponential factors. Agreement with experimental energy values has thus been

obtained with the aid of a single free parameter [1,2,22]. Because the calculations are formally carried out from the vantage

point of a single observer, it is essential to employ only a single time variable corresponding to his stationary clock/. There

is no need for more than one such variable in the calculations, although a separate distance variable must be used for each

of the particles in the system under consideration.
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